PERTURBATION SOLUTIONS AND ASYMPTOTIC SOLUTIONS IN BOUNDARY
LAYER THEORY*

by
L. Ting** and S.Chen**

1. Introduction

The treatment of nonsimilar solution of boundary layer equation with zero
pressure gradient as .perturbations from Blasius solution was outlined by
Stewartson |1]. The discrete eigenvalues and eigenfunctions of the pertur-
bation equation were obtained by Libby and Fox [2]. They have applied
these perturbation solutions to solve initial value problems with success
when the initial profiles do not differ much from a Blasius profile, In their
formulation, the tangential velocity u along the surface with x as the are
length and y as the normal coordinate is written as

u(x,y) = f.q(x, n) ~ fi(n) + fl,n(x’ n) + fzg'q(x’ n)+ ...

where f, is the Blasius solution and 7n is the Blasius variable with n =
y(2vx)'* and v is the kinematic viscosity. It suffices to discuss only the
two dimensional incompressible boundary layer, since the generalization
to compressible and axially symmetrical cases can always be achieved by
the standard transformation of Mangler-Howarth et al. [3] when the ap-
propriate assumptions are accepted. The perturbation solution f,(x, n) sa-
tisfies the following differential equation,

£ + 1 f + U = 2x (f'f

1,97y o1,y - £ ) (1.1)

1,xv
the initial condition at x = Xo,
£y, %0 = Flxgm) - f4(n) (L.2)
and the boundary conditions
fl',q(x, o) = f (x,0) =0 (1.3)
and flm(x,n-wm) -0 (1.4)

The function F(x,,7n) is related to the initial profile g(y) by the transfor-
mation of the variable y to 7n, i.e.,

ux,,y) = gly) = g[n(zwco)%] = F(x4,1) (1.5)
The solution f, (x,n) is written [2] in the form

fi,9 x.0) = _122 An(x/xo)"ln Ni(n) (1.6)

A, and N, are the eigenvalues and the normalized eigenfunctions respect-
ively. The coefficients A, are defined by means of the orthogonal condi-
tions as follows
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0o 1
8, | [(f:»’*/fz:]{ [P, ) - 1) ] dﬁ/fz,}'(Nn/f;,r dn (1.7)

The discrete eigenvalues are obtained when the weaker boundary condition
atn ~e, Eq. {1.4), is replaced by the requirement of exponential decay,
i.e.,

f),q &1 >=) 0 [exp(-n)] (1.8)

Since the variable x does not appear explicitely in the boundary layer equa-
tion with zero- pressure gradient, the solution should depend only on the
initial profile g(y) and should be independent of the value of x, which has
been used to designate the initial station x = x,, However, the perturbation
solution does depend on the choice of x, since the basic Blasius solution,
the initial condition, eqs., (1.3), (1.5), and differential equation {1.1) de-
pend on X, when y is transformed to 5.

‘In Ref. 2, the value of x, is defined by placing the origin at the leading
edge or the stagnation point' on the body surface. At the suggestion of
Ferri, the possibility of improving the perturbation solutions is demon-
strated by Fox and Chen [4] by adjusting the value of x, along the con-
ventional ideals of matching either the displacement thickness, the mo-
mentum thickness or the initial shear stress at wall of the Blasius solu-
tion with that of the initial profile.

It is the purpose of this paper to find a unique method of defining x, by
the examination of the solution of a simplified boundary layer equation,
namely the heat conduction equation. For the unsteady linear heat flow
problems, the -exact solutions are available, By a shift of time scale by
an appropriate amount, t,, the first two terms of the asymptotic expansion
are combined to one to form the optimum one term asymptotic represen-
tation. This method of determination of the optimum initial station t, relies
on the knowledge of the exact solution. This method, therefore, cannot be
applied to determine the optimum initial station x, for the perturbation
solution of boundary layer equation.

Corresponding to the perturbation solution for the boundary layer equa-
tion, the perturbation solution or the series solutions are obtained with an
arbitrary shift of time scale by the amount t* with t¥>0. Similarly, when
the requirement of solutions with exponential decay is imposed, discrete
eigenvalues are obtained. The coefficients will be finite if the initial data
also possesses the property of- exponential decay. The possession of such
property for the initial boundary layer profile has been taken for granted.

The first term of the series solution is identified with the first term of
 the asymptotic solution with the same shift, t*, in time scale. For large
time, the series solution agrees with the asymptotic solution. The first
two terms of the series degenerate to one when the time shift t* is so
chosen that the initial data is orthogonal to the second eigenfunction and
hence the coefficient of the second term vanishes. The value t* so defined
is identical to the value t, and the leading term is then identical with the
optimum one term asymptotic representation. '

For boundary layer solutions, the Blasius solution with any value of x,
for the initial station represents the leading term of the asymptotic so-
lution, The perturbation solution which decays faster in x can be consi-
dered as the higher order asymptotic solutions. With this interpretation
the Blasius solution will be the optimum one term solution if the value x,
is so chosen that the next term i.e., the first term of the perturbation
solution vanishes. x, is therefore defined by the condition that the deviation
of the initial profile from the Blasius solution is orthogonal to the first
eigenfunction of the perturbation equation.

-The advantage of defining x, in this manner instead of other methods,
e.g., matching of displacement or momentum thickness, is confirmed by
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comparing the corresponding Blasius solutions with the finite difference
solutions for a wide variety of initial profiles.

The identification of the perturbation solutions as asymptotic solutions
resolves the indeterminancy in the perturbation solution. In a subsequent
paper, the higher order asymptotic solutions will be viewed as perturbation
solutions’so that the appearance of log terms can be predicted and deter-
mined directly. ’

2. Optimum One Term Asympiolic Representation of Linear Flow of Heat
The equation of linear flow of heat paralled to y-axis is
9%u/ay? - (1/k) (du/dt) = O (2.1)
where u is the temperature and k the diffusivity. The solution of the equa-
tion of linear flow of heat in the infinite region, -w<y<w, with the initial
condition,
u = gfy) when t=20 (2.2)

can be expressed as an integral of the elementary source solution,
‘ N C 2
a (7.t) = k) | grexp [-o-y)*/ (4kt)] ay (2.3)

The standard symbols for the error function erf £ and its derivatives
On(g) = d"erf(g)/dE" will be introduced. With E defined as (y'-y)/(4kt),
the solution u(y,t) can be written as

"

7} gl O, (E)dE

u(y, t)

»

gy, (§)d§ + %_f gly")Q, (£)dz (2.4)

-0

L
2

g §—p

where £¥ = -y/(4kt)} is the value of g at y' = 0,
By means of integration by parts and the method of induction, it can be
shown that

N 0
a.t) = § L@k %) [ln-10 ]2 | v gy
+ §(akt) BHU/2 [(N—l)z]'l{j“ dy' @y, (8) 5 G-y gG)dy
L] y ° y'
- Jaeu, @ - g()‘r)d?} (2.5)

The first N terms represent the asymptotic expansion of u for lar_'&e t and
the last term, representing the difference, is of the order of t(N+1/2
Of course, this representation is meaningful only when y"g(y) is integrable
from -« to +w». It is therefore necessary that the initial data g(y) should
have the property that

gly) = ofly I'“) for any ¢ > 0 as y = = {2.6)
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Since the initial data g(y) can always be written as the sum of an even
function [gly) + g(—y)l/z and an odd function [g(y) - g(-y)]/2 and the so-
lution depends linearly on g, the solution can be split into even and odd
solutions which will be examined separately, With kt replaced by vx and u
interpreted as the x-component of velocity, the even solution can be rea-
dily identified as the far wake solution [6} and the odd solution represents
the boundary layer solution along a flat plate subjected to the Oseen-Carrier
[7] approximation.

For an even-initial profile, the asymptotic representation for the solu-
tion becomes

<

uly, t) = u(-y, t) ~ H(4kt)* , (&%) j g(7)dy

-

+
e

(4kt)** &, () | & /2)e)93

2N+1 o
+ 3 B ek @n(a*)j 721 [(n-1)t] g(5)ay
+ 0 [(t) a2 ] (2.7)
~ 3t @, 5 | gy + 0¢ ) (2. 8)

With @, (k) = d(erf E¥)/dE™ = 2(m) *exp [-y?/(4kt)] the first term represents
the source solutionat y = 0, t = 0, and of the strength J g(F)dy which is

the integral of the initial profgle.

Since the t-derivative of t*®; (£*) is 5t3/? [-1+2(5%)%]D1 (%), whichis
(1/4)t-3/2 Q3(E*), the second term is proportional to the t-derivative of the
first term. The second term can be absorbed by the first term with a shift
of time scale from t to t = t+t, where

to * 35 ) 726X/ | ey (2.9)
and eq. (2.7) becomes

a~ U g(?)d?]CI)l(E*)Elk(t + ) ]h o+ ty) P (2.10)

-0

where E¥ = -y/(4kh)} = -y/[ak( + to)]%
By the comparison of eq. (2.8) and eq. (2.10), the source solution orig-
inated at the instant t = -t, will give a one term asymptotic representation
of u with an arror of the order of t®/? while the same source solution
originated: at any other instant will give an error of the order of t~

The optimum one term asymptotic representation of an even solution is
therefore a source solution with strength equal to the integral of the initial
profile located at y = 0 and originated at the instant t = ~-t, where t, de-
fined by eq. (2.9) represents the second moment of the initial profile
normalized by the strength of the source.
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For odd initial profile, i.e., g(y) = -g(~y), the asymptotic series of eq.
(2.5), retains only terms with n equal to even integers, i.e.,

a(y,t) = -uy,0) ~ 34k B, 5%) [ ¥ g6) oy

+
I

L (akt)2Q, (£%) f [7°/3t] eG)a5

2N o
+3 B @) 0, 6% [ 77 1] 7 eay
+0 [(t)'(N+1)] @1
~} @7 %) | FeGy + 0 ) 2.12)

The first term represents a doublet solution located at y = 0 originated
at t = 0 and of the strength of the first moment of the initial profile, i.e.

j y g{y)dy or 2 J y g(7)dy. The second term is again proportional to the

first t-derivative of the first term and can be absorbed by the first term
with a shift of time scale from t to t = t + t! where

ty = [1/@0] | 57° eGNF/ | 7 eGx (2.13)
and eq. (2.12) becomes
uly,t) = -u(-y, t) ~ 3 [4k(+tr)] @Z(é*)j 7 gdy + 0t™)  (2.14)

where E* = -y/ 4Kt = -y/ [4k(t+t'o)]%. The doublet representation origi-
nated at the instant t = t!, reduce the error from the order of t2 to t=,

The optimum one term asymptotic representation of an odd solution is
therefore a doublet solution with strength equal to the first moment of the
initial profile located at y = 0 and originated at the instant t = -t', where
t', defined by eq. (2.13) represents the third moment of the initial profile
normalized by the strength of the doublet.

The solution for linear flow of heat is divided into even and odd solu-
tions with respect to the space variable. For each solution, the even or
the odd, an optimum shift of time scale is defined such that the second
term in the asymptotic expansion for large t disappears.

3. Sevies Solutions of Linear Flow of Heat

For boundary layer equations with zero pressure gradient, perturbations
from the Blasius solution have been obtained in the form of series solu-
tions, These perturbation solutions not only are asymptotically of higher
order than the Blasius solution far downstream, i.e., x -« but also re-
main smaller than the Blasius solution for region near the initial station
in order to justify the linearization of boundary layer equation., Since the
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equation of heat conduction, eq. (2,1), is linear, there is no reason to
look for perturbation solution. The counter part is a series solution with
the first ferm as the leading term and the remainder of the series as the
perturbation solution. To construct the _series solut1on, new variables t
and E are introduced with t = t + t* and E = y/(4kt) It should be pomted
out here that the constant t* is not yet defined but has to come out posi-
tive to make sense for the initial value problem while in the preceeding
asymptotic expansion either a positive or negative value of x, is acceptable.

By means of separation of variables, the solution u(E, t) will be repre-
sented by weries of product as follows

R R NGUNORI RN NG (3.1)

-2

The partial differential equation yields F, t) = A t and the differen-

tial equation for Q,,
O + 26Q + 200, =0 (3.2)

where (') represents differentiation with respect to E The boundary con-
ditions for symmetric solution are

d10) = 0 ; (3.3)
and (I)X(oo) - 0, (3.4)

With this weak boundary condition at «, the eigenvalue A has a continuous
spectrum, A > 0, To obtain a discrete spectrum for the series solution,
it is necessary to impose a stronger condition, [8],

@, (£) ~o(EN ) for any N> 0. (3.5)

With Eq. (3.5) instead of Eq. (3.4), the eigenvalues are the odd integers
1,3,5,.... and the eigenfunctions are the ‘odd derivatives of the error

function, i.e.,
0, () = d(erf £)/dE™ = (-1)" [2/nt]exp(-EH)H, (E)

where H, is the Hermite polynomial [9] The eigenfunction @, actually
fulfills the condition of exponential decay i.e.,

@, ~ 0 [E"exp(-£%)]

The necessity of imposing a stronger asymptotic behavior to obtain a dis-
crete spectrum is similar to what has happened in the development of the
perturbation solutions in boundary layer theory. In the present case the
exact solution is available and the stronger asymptotic behavior can be
concluded from the exact solution of eq. (2.1) provided that the initial
data fulfills the condition of eq. (2.6), With the_discrete eigenvalues, the
series solution becomes u(x,t) = £ A (t)'“/2 ®, (g) and the constants A is
related to the initial data by the orthogonal condition with exp (52) as the
weighing function,

8, = @)Y J g[sun®)!lexpE)0, (BE/ | exp)0; (@18 (3.6)

In particular for n = 1, A; = (t* %f [E(4kt*)i :] dE = ;J’ g(y)dy(4k)* and

Ead -0
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]
the first term which is L(4kt)* &, (E)j g(y)dy represents the basic source
solution initiated at the instant t = -t*, For large value of t or t, the
ser1es solution can be identified with the asymptotic solution independent
of t*[10]. A direct formal identification can be ‘made by the following ob-
servations
Lim (t%)2/2 H, [y/(@kt*) ] » 25"/ (4k) /2

t.-t o

and  Lm A,-() | y""er)dy/ [(46)* @-1)],
ts0

It should be kept in mind that the series_ solut1on for the initial value
problem is Vahd only when t* > 0 so that t = t + t* > t* > 0, With this
identification t* can be defined by eq. (2.9) for t, from the study of the
asymptotic expansion of the exact solution., It 1s therefore desirable to
find a different definition for t* which does not rely on the knowledge of
the exact solution,

For a given wvalue of E, the series solution can be considered as an
asymptotic solution in . The first term would be the optimum one term
representation if the coefficient of the second term vanishes, i.e.

A3= 0 3.7)

or [ g[E(@kt™) ]exp(E*)0, (E)E = 0 (3.8)

-0

The vanish of this integral means that the initial data is orthogonal to (I)a
For the determination of t*, the varla}gle E is re laced by y with & =
y/ (4kt* )’k the identity exp(E 2D, (E) = 277 (€) = 27~ (4’6,2—2) is recalled

and equation (3 8) becomes f g(y)[y (kt,) - :I dy = 0 which in turn
yields t* = ZkSy g(y)dy/Sg(y)dy This definition of t* is identical to that

in eq. (2 9) which was obtamed in a different manner from the asymptotic
expressions,
Since the first term is orthogonal to (Da, eq. (3.8), can be replaced by

[ [0 - A, ) &, (&) Jexn(&®), (EE = 0 (3.9)

If the first term of the series solution is identified as the basic solu-
tion and the remainder is identified as the perturbat1on solution, the con-
dition for the determination of the unknown shift of origin, t*, is that the
coefficient of the first term in the perturbation solution (the second term
of the series solution) should vanish. The equivalent condition, eq. (3.89),
states that the deviation of the initial profile from the basic solution should
be orthogonal to the first eigenfunction of the perturbation solution (the
second eigenfunction of the series solution), The basic solution with t* so
determined will yield the optimum. one term asymptotic expansion,

The rule can be shown to be valid also for solutions odd in y [10]. This
general rule will be applied in the next section to perturbation solutions
in boundary layer theory.
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4. Optimum Blasius Solution

In the formulation of perturbation solutions of boundary layer equation
with zero pressure gradient and with nonsimilar initial profiles [2], the
basic solution is the Blasius solution. With the Blasius solution starts at
the origin of the coordinate system, the location of the initial station x = x,
is arbitrary.

The Blasius solution also represents the leading term in asymptotic so-
lution for large x. The perturbation terms which decays as x™ with
A, =1, 1,887, 2.818, 3,800,,,, can be considered as part of the higher
order asymptotic solutions. In the development of perturbation solutions,
the expansion parameter is a measure of the deviation of the initial pro-
file from the Blasius Exrofile. Nevertheless, the first term of the first
perturbation solution f& should be identified with the next term of the
asymptotic solution for 1arge x due to the following argument., The second
perturbation solutions which have homogenous initial and boundary condi-
tions are nontrival due to the nonhomogenous terms -fif; an 2x(f1, .,,fl xn *
- f14mf1,x). They behave as x2*1 or x2 for large x and the second
perturbatmn solution f, ™ (x,n) should behave likewise, therefore fy 4 (x,7)
does not contribute any x 1 terms. Similar arguments can be extended to
high order perturbation solutions.

The possibility of the arbitrariness in x, can be explained by the fact
that the first eigensolution is proportional to the first x-derivative of the
Blasius solution [11] and the first eigenvalue is unity, i.e.,

-1 -1
(e = A 6) N ) = A6t (4.1)
and A = 1.

On the other hand, the second and higher x-derivatives of the Blasius so-
lution do not fulfill the perturbation equation and the boundary conditions
and the eigenvalues A; are not integers for n = 2.

The identification of the Blas1us solution f, and the first term of the
linear perturbation solution f& with the first two terms of the asymptotic
solution and the identification of the first eigenfunction Y (M to the x-deri-
vative of the Blasius solution permlt the comb1nat1on of the first two
asymptotlc terms to one term, the "optimum' Blas1us solution. The com-
bination is accomplished by choosing x such that f vanishes or the coef-
ficient A; in eq. (4.1) vanishes. The condition for the determination of
x_ is obtained from eq. (1.7),

A, = f {[f'o(n)]4/f!§(n)}{( jn [Fexcoimo) +

- o ) ]an )/} [N (/e m)]rdn = o0 (¢.2)

This is equivalent to the statement that the deviation of the initial profile
from the Blasius solution is orthogonal to the first eigensolution N, (n) or
nfy-f,. With the location of the initial station x, defined by eq. (4.2), the
corresponding Blasius solution will bé optimum one term solution in the
sense that it will differ from the.complete solution asymptotically as x A2
or x1-887 instead of x'. This method of determination of x, and the
optimum one term solution is parallel to that in the preceding two sections
for solutions of simple heat conduction equations.

The usefulness of this optimum Blasius solution will be tested by com-
parison with the exact numerical solutions of the boundary layer equation
[12, 13] for several types of initial profiles.
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The first type of initial profiles is associated with the boundary layer
along a wall which is permeable from x = 0 to x = L, and is impermeable
for x > L. The solution for x < L, is similar and may be obtained from
Low [14 . The solution for x > L, is nonsimilar. Since the tangential ve-
locity profile at the station x = L, is continuous [15] the initial profile
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Figure 1 - Variation of the skin friction for after injection, fy, = -0.5/\/5
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Figure 2 - Variation of the skin friction for after injection, fy = ~0.15/42.
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Figure 3 - Variation of the skin friction for after injection, f,, = ~1.0/4/2
at x = L is provided by the continuation of the similar solution from

x <L tox =1,

Three initial profiles corresponding to three d1fferent rates of 1nJect10n
in the permeable region; f, = -0. 5(2) -0, 75(2)‘I and -(2) are congi-
dered. Figs. 1, 2 and 3 show the compar1son of numerical solutions of
shearing stress along the wall with those from Blasius solutions with x,
defined in various manners. The shearing stress is nondimensionalized
with respect to the Blasius value originated at x = 0, The horizontal line
7/T, = 1 which represents the one term Blasius solution with x, = L and
differs significantly from the numerical solution even at x - x, = 10 L,
The Blasius solution with x, defined by matching the momentum thickness
is very close to the optimum Blasius solution with x, defined by setting
A1 = 0. Both solutions are in good agreement with the numerical solution
for x - x4, > 2L as shown in Figs. 1, 2, and 3.

All three initial profiles, g(y) are of the type quite similar to Blasius
profile in the sense that they are monotonically increasing functions of y
and their derivative, g'(y) is monotonically decreasing function of y, ex-
cept at small value of y where g'(y) increases slightly from g'(0) to a
maximum. In the next two examples, the initial profiles will be quite dif-
ferent from the Blasius profile.

Fig. 4 shows an initial profile which simulates the problem of free
mixing in the vicinity of a flat wall., The velocity profile at the initial
station x = L. is composed of a free mixing prof11e [16] with velocity ratio
0.5014 on top of a Blasius profile. Both the m1x1ng layer and the boundary
layer start at x = 0, The initial profile g(y) is monotonically increasing
in y but the derivative g'(y) decreases to a positive minimum and then in-
creases to a maximum and finally decreases to zero as y increases. The
shearing stress at wall is nondimensionalized by the Blasius value origi-
nated at x = 0 or x, = L. Fig, 4 shows that the Blasius solutions with
x = L or with x, defined by the matching of displacement thickness or
momentum thickness are quite different from the numerical solution even
for x - Xy, ~ 10 L. The optimum Blasius solution is approaching the nu-
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Figure 4 - Variation of the skin friction for mixing boundary layer interaction.
merical solution rapidly for x - x, > 2 L,
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Figure 5 - Variation of skin friction for wake boundary layer interaction.
Fig. 5 shows an initial profile at x

L, which simulates the interaction
of the wake behind a small cylinder which is submerged inside the boundary
layer along the wall originated at x

0. The engineering objective is to
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reduce - the skin friction or rather the flux at wall. The initial velocity
profile is not monotonically increasing with respect to y. There is a re-
duction in velocity in the wake region. Fig. 5 shows again that the opti-
mum Blasius solution approaches the numerical solution rapidly for
X - xo> 2 L,

The examples in this section demonstrate that the optimum Blasius so-
lution will approach the exact solution rapidly not only for the cases where
the initial profiles deviate slightly from a Blasius profile but also for the
cases where the types of profiles are quite different.

5. Concluding Remarks

The solution of boundary layer equations with zero pressure gradient
and a given initial profile by perturbation from Blasius solution depends
on the assignment of the distance x, from the origin of the Blasius so-
lution to the initial station. It is the purpose of this paper to find a for-
mula to determine x, from a given initial profile with justification. This
is accomplished by a systematic study of the relevent properties of the
simplified boundary layer equation, the unsteady heat conduction equation.

For unsteady linear heat conduction problems, the asymptotic solutions
for large t are obtained from the exact solution of the initial value problem
starting at t = 0. It is shown that either for an even solution or an odd
solution the second term in the asymptotic solution can be absorbed by
the first term with a shift of the time scale to form an optimum one term
solution., This property is due to the fact that the time derivative of a
solution is also a solution of the equation and also preserves the property
of even or odd, The even solution is equivalent to the solution of far wake
problem and the odd solution is that of the linearized boundary layer equation.
The results in Section 2 can be readily extended to two or three dimen-
sional problems.

In Section 3, a series solution for an even or odd linear heat flow problem
is developed by a method of separation of variables similar to the vari-
ables in perturbation solution of boundary layer equation, There is an
arbitrary shift of time scale from t to t = t + t* so that at the initial
station t = t*>0. The eigenvalues are discrete subjected to the condition
that the solution decays exponentially ‘with respect to the space variable
and the series solution exists if the initial profile decays exponentially
with respect to the space variable.

The first term of the series solution, the first eigensolution, is identified
with the leading asymptotic solution with the same shift of time scale. When
the time shift t* is so chosen that the second term of the series solution
vanishes, the first term is identical with the optimum one term asymptotic
solution. The corresponding value of t* is determined by the condition that
the second eigensolution is orthogonal to the initial profile or to the devi-
ation of the initial profile from the leading term. Thus t* and the optimum
one term solution are determined without the knowledge of the exact so-
lution. In Section 4 this method is applied to boundary layer problems
where the exact solution is not available.

For boundary layer with zero pressure gradient, the Blasius solution
can be considered either as the leading term for the perturbation solution
or the first term of the asymptotic solution. The development of the per-
turbation solution with the exception of nonlinear terms is step by step
the same as that for the series solution of the heat transfer problems
with its leading term identified as the Blasius solution. In particular, the
perturbation equation has discrete eigenvalues if the solutions are required
to decay exponentially in y and the coefficients of the perturbation series,
eq. [1.7 ]Will be finite if the initial profile decays exponentially also. This
condition has usually been taken for granted. The first term of the pertur-
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bation solution is identifiable with the second term of the asymptotic solution
which is proportional to the x-derivative of the Blasius solution. The se-
cond term in the asymptotic solution disappears if the first term of the
perturbation solution vanishes. The condition for the distance x, between
the origin of the Blasius profile and the initial station is therefore defined
by the condition that the deviation of the initial profile from the Blasius
solution is orthogonal to the =x-derivative of the Blasius solution. The
corresponding Blasius solution yields the optimum one term asymptotic
solution. The conclusion is also justified by comparison with numerical
solutions of several initial profiles whether of the same type or different
from the Blasius profile.

It should be noted that instead of integral representations, series solu-
tions with discrete eigenvalue are obtained either from the linear heat
transfer problems or for the perturbation problem of boundary layer equa-
tions by restricting the initial profiles to the type with exponential decay.

This restriction is not severe from the engineering point of view,
fore,

there-

the possibility of developing the series solution with a restricted

initial profile to other problems should be explored further.
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